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Regge pole-like terms in the high-energy behavior of production amplitudes are evaluated by using the 
leading asymptotic behavior of sums of Feynman diagrams. The forms obtained depend on the way variables 
are allowed to tend to infinity. 

1. INTRODUCTION 

RECENT investigations into the high-energy be­
havior of scattering amplitudes1 have been 

concerned with two-particle to two-particle processes 
only. However, if Regge poles play an important 
dynamical role in strong interactions they will also 
manifest themselves in the high-energy behavior of 
production amplitudes. Kibble2 and Ter-Martirosyan3 

have suggested heuristically what form this might take. 
The rigorous investigation of this problem is ham­

pered by the fact that the complex singularities of 
production amplitudes4 prevent the use of the Froissart-
Gribov method of analytic continuation to complex /. 
In this note we use the methods which have been 
developed5-7 to evaluate the leading asymptotic be­
havior of terms of perturbation theory. They are based 
on the assumption that the sum of the leading asymp­
totic terms of a series of diagrams gives the leading term 
of the sum. These methods will be applied explicitly 
only to simple ladder-type graphs, although the exten­
sion of the theory to more complicated iterated systems 
which also yield Regge poles5-8 is quite straightforward. 
I t is now known9 that perturbation theory also gives 
other types of high-energy behavior in addition to the 
Regge-pole behavior but these additional terms will not 
be considered here. They do not arise for ladder 
diagrams. 

I t will be found that a variable-power asymptotic 
behavior is obtained, although the trajectory function 
a enters the expression in a more complicated way than 
for two-particle processes. The most important result is 
that the asymptotic form depends on how many 
variables are held fixed and how the remainder are 

* The research reported in this document has been sponsored 
in part by the Air Force Office of Scientific Research, OAR, 
through the European Office, Aerospace Research, U. S. Air Force. 

1 A convenient summary of results is given in E. J. Squires, 
Lectures on Complex Angular Momenta (W. A. Benjamin, to be 
published). 
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Cimento 17, 956 (1960). 
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6 P. G. Federbush and M. T. Grisaru, Ann. Phys. (N.Y.) 22, 

263, 299 (1963). 
7 I . G. Halliday, Nuovo Cimento (to be published). 
8 N. H. Fuchs, J. Math. Phys. 4, 617 (1963). 
9 J. C. Polkinghorne (to be published); P. G. Federbush and 

M. T. Grisaru (private communication); G. Tiktopoulos, Phys. 
Rev. 131, 2373 (1963). 

allowed to tend to infinity. The form proposed by 
Kibble2 and Ter-Martirosyan3 does not correspond to 
any of the limits investigated in this paper. 

2. FIVE-POINT AMPLITUDES 

We shall consider bosons all of unit mass interacting 
through a Yukawa interaction. The diagrams considered 
are of the type shown in Fig. 1 with the invariants de­
fined as the squares of the sums of pairs of adjacent 
ingoing momenta in the way indicated. The a», ft-, yu, 
yi, 8m, are the Feynman parameters associated with 
the lines of the diagram. These parameters will also be 
denoted by the collective symbol £n. 

The asymptotic behavior of a physical amplitude will 
require the addition of a number of terms of this type 
corresponding to diagrams obtained by permuting the 
external lines. Only those diagrams in which at least one 
of the variables s, sh s2 becomes large, and h and t2 re­
main fixed, will give significant contributions. 

In order to obtain Regge pole-like terms in the 
asymptotic behavior a sum must be taken over all the 
different numbers of rungs in the two ladders in Fig. 1. 
There are a number of different interesting cases corre­
sponding to different types of limit: 

(i) s —» oo ; si, s2, h, h fixed. 

The contribution from the diagram Fig. 1 is 

„2r+l 

7r2r(f+l) 
(i67r2y 

1 [C©]^(EM) , N 
di (1) 

where r = w + # , and C and D are the Feynman numer­
ator and denominator functions associated with Fig. 1. 
The coefficient of s in D is 

v~av 'Onfil- '''fin. (2) 
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FIG. 1. The type of ladder diagram considered. 
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The leading asymptotic behavior in s comes from 
integration over the neighborhood of the zeros of g, i.e., 
«!==••• =/3n=0.5 '6 This yields 

7r2r(r> - f dydy'dh 
(16**)' -,-0 

Lc(y,y'm^8( L 7+E T'+L 5-1) 
X-

ld(y,y',S;h,h)J 

X(lnSy-VsT(r), (3) 

where c and d are the Feynman numerator and de­
nominator functions of the contracted diagram, Fig. 2. 
The expression in curly brackets in (3) is just the correct 
contribution for the Feynman diagram Fig. 2 but 
evaluated with two-dimensional momentum vectors. 
Thus, (3) may be written as 

(In s)r~l 

* V ( ' l ) ] ^ V ( ' 2 ) ] ^ K M 2 ) -

where 

«'«)=-
and 

?&&)=*>? 

sV(r) 

1 dhdh « ( { i + f c - 1 ) 

0 [ j l ^ + ^ l + S l ^ - l ] 2 

(4) 

(5) 

(6) 

A sum is now taken over leading contributions from all 
diagrams with m+n equal to a fixed value of f. This 
yields 

(In *)-i [«' ft)]-1- [«' « 0 ] - x 

g2/Jft,*2) — — • (7) 
sT(r) a'{h)-a'{h) 

A final sum over all values of r yields 

where 

(8) 

(9) 

is the same trajectory function as appears in four-point 
ladder diagrams.5'6 

As h —» h (8) becomes 

£&(h,h)s»™\*s, (10) 

corresponding to a double Regge pole. 

(ii) 5, $i, 2̂ —> °°, *i, h fixed. 

We write s = kS, Si= k±S, s2=k2S, S —> <*>. The coeffi­
cient of 5 in D is of the form 

ocv • -CLnfiv • -jSn^+ai- • -aimAi(&Y'^i)£i 

+j8r--j8nA2(a,7,82)*2, (H) 
where 

A1 = 5iAn(/3,7,)+/3iAn
,03,7') 

and 
A2 = 52Am(a/y)+aiAm '(a,7). (12) 

Aw- • • Am may be calculated but it is sufficient to notice 
the following properties: 

(a) Ai does not vanish when one of the /3's is zero; 
(b) when all the /3's are zero, 

;=i 

together with similar properties for A2. 
To make the coefficients of k, kh k2 vanish it is 

necessary to set at least two Feynman parameters equal 
to zero. These pairs may be chosen as follows: (1) one 
ai (i= 1, • • • ,m) with one &• (j= 1, • • • }n); (2) <5i with fix; 
(3) 52 with a\. Since the scaling procedure7 gives us 5 
functions with arguments «»+&— 1 we must be careful 
to make these arguments linearly independent. We take 
them as follows. First, we have the distinguished pairs 
(5i,/3i), (52,«i). We may then take (amyfii)(i= 1, • • - ,n) 
and, finally, (aifin) ( ^=1 , ' * •,#&-—1). These pairs span 
the space of all possible pairs and are linearly 
independent. 

We carry out the scalings on (2), (3) first. Under 
these the coefficient of k is linear and is retained. How­
ever, when we carry out the remaining scalings it is of 
second order and so may be dropped. The final result 
is thus independent of k. When we have carried out all 
these integrations, we end up with the final asymptotic 
form 

02r+l 

7 r 2 r ( r - i ) -
(16TT2)'-

dydy'dbz 

X-
Ci(70c2(7)[4(7,7 , ,53^i,/2)] r-1 

X ( l n S ) 7 £ i W 2 r ( H h l ) , (13) 

where c0 and dQ are obtained from c and d by putting 
5 i=5 2 =0. The integral in the curly brackets in (13) 
reduces to 

*YW{h)j*-iw(h)y-\ (u) 

Summing leading terms for all m and n gives 

a'{t2)S
a^-a'{h)S«^ 1 

7T2g' f -
k2Sa' (hW (h) [_a (h) - a {t2) ] a' (hW (t2)S. 

(iii) s, si —> co ; s2, th t2 fixed. 
(15) 

FIG. 2. The contracted diagram associated with Fig. 1. 
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FIG. 3. The semicontracted diagram associated with Fig. 1. 

We write 
Si=kiS, S~^ co . 

The property (a) of Ai implies that the leading asymp­
totic behavior is obtained by integrating in the neigh­
borhood of ai= - - • =am=0. The ft integrations do not 
enhance the asymptotic behavior. The resulting form is 

*« ( f l )G(Ai;*i,V2), (16) 

where the ki dependence does not factor out of the 
expression obtained for G. 

(iv) Si —» 00 ? followed by s2 —» °° ; s, h, h fixed. 

The limit s\—> 00 is obtained by integrating in the 
neighborhood of ai= • • • = a m = 0 . This yields 

7r2rw-) " J • / 

( 1 6 T T 2 ) ' - 2 7 0 

dpdydy'dS 

X-
. CCi(Y,7,,^)J-1a( L ff+E T + S y + Z g-D 

Ai03,7',«)CZ?i(T,T',«,|8_;**,/i,<.)]r 

X(lnsi)" r"1Air(f»), (17) 

where Ci and Dx are the Feynman numerator and 
denominator functions of the semicontracted diagram 
Fig. 3. 

The coefficient of s2 in D\ is 

i8r-- /3Ac2(7) . (18) 

Thus, the leading asymptotic behavior will be given by 
integrating in the neighborhood of £1= • • • = ^ = < 5 2 = 0 . 
However, in evaluating this behavior a new feature is 
encountered. The property (b) of Ai, together with the 
presence of Ai in the denominator of the integral in (17), 
means that the 5i integration also affects the asymptotic 
behavior of (17). The effect is evaluated in the 
Appendix. 

Application of (A4) to (17) gives 

\w2T(r-l) / dydy'dbz 
I (167r2y-2./o 

X-

(16TT2)' -JO 

.C^o(T ? 7^3) ]^ ( £ 7 + Z 7 '+ f i» - l ) 

ci(Y)c2(y)Ldo(y,yfMliA)J~1 

( l n ^ i ) ^ 1 ( lns2)n + 1 

X-
siT(m) s2T(n+2) 

(19) 

The integral in the curly brackets reduces to (14). Sum­
ming over m and n gives 

7T2g5Sia(tl) 
rs2

a^ l+af(t2)lns2-

•af2{t2) s2a'2(t2) 
(20) 

The form (20) is independent of s. Note that the form 
depends upon the order in which si and s2 tend to 
infinity. 

3. HIGHER AMPLITUDES 

The types of limit existing for six-point and higher 
amplitudes are considerably complicated by the exist­
ence of nonlinear Gram determinant relations between 
the invariants. We shall be content to illustrate the type 
of asymptotic form obtained by an example correspond­
ing to Fig. 4. The limit considered will be one in which 
h=(p2+p3)2, t2=(p2+pz+p4)2, h=(pi+p<y)2 remain 
finite and 

(pz+p4)2=\uS, 

(pi+p5)2=^ibS , 

(ps+ptf^seS, S- (21) 

Other invariants, such as (pi-\rp2)
2, may also tend to 

infinity, but in the approximation of taking leading 
asymptotic behavior this does not affect the form of the 
answer [in the same way that Eq. (4) is independent 
of k~]. The calculation is identical to that described in 
detail in Sec. 2(ii) except that the d lines now consist 
of three disjoint lines. The resulting form is 

7ry/2A34X45A56S2 

-T.cyoi.af {t2)a\h)[_a{t2)-a{h)-]S^^ 
X 

n« ' (* i ) [«( '2 ) -a (*s ) ] 

1 

a'{h)a'{t2)a'{h). 
. (22) 

> \ K\ \h 

FIG. 4. The type of six-point ladder considered. 
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APPENDIX 

The new feature encountered in evaluating the 
asymptotic behavior of (17) is due to the fact that 
putting /3i equal to zero in the factor Ai in the de­
nominator gives a di integration which diverges at § i=0. 
In order to evaluate correctly the asymptotic form of 
(17), it is necessary therefore to integrate in the 
neighborhood of Pi= • • • =0 W =5 2 = O and 5 i=0. In order 
to evaluate the leading asymptotic behavior it is only 
necessary to consider the linear terms in Ai. The 
structure of Ai is such that these terms only involve di 
and Pi. Thus, the leading behavior can be obtained by 
evaluating 

d/3ddidd2 

o Ic^+Bp^^Pv -PJ2S+dJ 
(AI) 

(A2) 

The 5i integration is performed first to give 

1 rd/3d82l\nBp1-\n(c1e+Bp1)ll 

C\ Jo [CTPV ' 'Pnd2S+d~]r 

The second term in the numerator of (A2) is bounded 
when 0i = O so does not contribute to the leading 
asymptotic behavior. I t will, therefore, be omitted. The 
0i integration is now performed and yields 

c dpr -dpnd52 

(r-l)cic2d
r-

1 

Pr-PJiS 

X [ m ( e 0 2 . " 0 » W + l ) + O ( l ) ] (A3) 

1 (\nS)n+1 

~ - * o o . (A4) 
(r-Vdr-1 cic2 ST(n+2) 
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Low-Energy K-d Scattering* 
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The magnitude of recoil and binding effects in the multiple-scattering corrections to the impulse approxi­
mation in low-energy K-d scattering is examined by the introduction of a model which makes tractable the 
numerical evaluation of the double-scattering terms. The finite mass of the nucleons and the n-p interaction 
in continuum states are both taken into account. It is concluded that estimates of multiple-scattering 
corrections which ignore these effects are not reliable. The model is used to compute the sum of the cross 
sections for K~-\-d —* K~~\-d, K~-\-d —> K~-\-p-\-n. Comparison with the rather limited data available in 
the region 100 to 200 MeV/c favors the so-called solution II found by Humphrey and Ross in their analysis 
of K-p data based on the Dalitz scattering lengths. A pseudopotential or optical-model-like approach to 
meson-deuteron scattering, which may be useful in other problems, is also described. 

1. INTRODUCTION 

SOME years ago, Dalitz1 introduced two complex 
scattering lengths, which seem adequate for the 

phenomenological description of low-energy K,N scat­
tering and absorption processes. Considerable ambiguity 
in the values of AQ and Ai, the 7 = 0 and 1= 1 scattering 
lengths, respectively, was allowed by the data, and a 
number of attempts were made to reduce the ambiguity 
by a comparison of the rather limited data on K~—d 
reactions with theoretical predictions.2 The present 
work was begun in an attempt to estimate the validity 
of previous calculations and to improve them, if 
possible. 

* Supported in part by the U. S. Air Force. 
t Based on a dissertation submitted by A. K. Bhatia in partial 

fulfillment of the requirements for a Ph.D. at the University of 
Maryland, 1962. 

{Present address: Department of Physics, Wesleyan Uni­
versity, Middletown, Connecticut. 

1 For a review, see R. H. Dalitz, Strange Particles and Strong 
Interactions (Oxford University Press, London, 1962). 

2 T . B. Day, G. A. Snow, and J. Sucher, Nuovo Cimento 14, 
637 (1959); Phys. Rev. 119, 1110 (1960). 

More recently, the work of Ross and Humphrey3 

narrowed the ambiguity to a choice of two solutions, 
so-called solutions I and II , corresponding, respectively, 
to 

I : A0=-0.22+2MiF, ^ i=0 .02+0.38f F , 

I I : , 4 0 = - 0 . 5 9 + 0 . 9 6 ; F, A t= 1.2+0.561 F . 

Akiba and Capps4 then showed that only solution I I is 
consistent with the data of Tripp et al.h obtained in the 
reaction K~+p -> 2 + T T at 400 MeV/c. 

We may, thus, turn the problem around and ask to 
what extent an analysis of K~—d scattering processes 
supports this choice, bx better, to what extent one may 
correctly predict K~—d scattering and reaction cross 
sections, using this choice of the phenomenological 
scattering lengths. 

3 W. R. Humphrey and R. R. Ross, University of California 
Radiation Laboratory Reports UCRL-9749 and UCRL-9752 
(unpublished). 

4 T . Akiba and R. H. Capps, Phys. Rev. Letters 8, 457 (1962). 
5 R. Tripp, M. Watson, and M. Ferro-Luzzi, Phys. Rev. Letters 

8, 175 (1962); 9, 28 (1962). 


